.icpor

تحليل خزش در استوانههاى دوار چندلايه كامپوزيتى تحت فشار داخلى با چيلمان متقاطع

	مهران بغدادى: كار شناسى ارشد، مهندسى عمران	توسعه دهنده:
	مهران بغدادى	تهيه كننده مستند:
	9\%/.a/r\%	تاريخ تنظيم

فهرست مطالب

49
$9 V$

VI
: Main Part. $10-$ ץ
: Main Part.lı-r منابع و مراجع

فهرست شكلها

IT
شكل (() هندسه سيلندر دوار تحت فشار داخلى شكل (Y) توزيع جابجايى شعاعى در سيلندر كاميوزيتى دوار در حالت الاستيك براى مقادير مختلف زاويه الياف [[if حضور بار گذارى فشار داخلى
شكل (
بدون حضور بار گذارى فشار داخلى

شكل (¢) توزيع تنشهاى مماسى در سيلندر كامیوزيتى دوار در حالت الاستيك براى مقادير مختلف با زاويه الياف 19

بدون حضور بار گذارى فشار داخلى
شكل (IV بدون حضور بار گذارى فشار داخلى
شكل (६) توزيع تنشهاى موثر در سيلندر كامیوزيتى دوار در حالت الاستيك براى مقادير مختلف با زاويه الياف [11
حضور بار گذارى فشار داخلى

شكل (V) توزيع جابجايى شعاعى در سيلندر كاميوزيتى در حالت الاستيك براى مقادير مختلف زاويه الياف [
r.
شكل (^) توزيع تنشهاى شعاعى در سيلندر كامپوزيتى در حالت الاستيك براى مقادير مختلف زاويه الياف [[
r فشار داخلى
 r

شكل (• () توزيع تنشهاى محورى در سيلندر كامیوزيتى در حالت الاستيك براى مقادير مختلف زاويه الياف [rr
 rr
 ra
 re
 rv فشار داخلى
شكل (• (1)توزيع تنشهاى محورى در سيلندر كامپوزيتى دوار در حالت الاستيك براى مقادير مختلف زاويه الياف [rA
 ra

شكل (IV)توزيع تنشهای شعاعى براى چهار نمونه سيلندر جداره ضخيم كامپوزيتى زمينه آلومينيوم تقويتشده با ذرات
rr
كربيدسيليسيوم

شناخت و توسعه مواد جديد با قابليتهاى بالا يكى از نيازهاى ضرورى و پيش شرطهاى لازم جهت پيشرفت تكنولوزى و صنعت محسوب مىشود. در اين تحقيق، توزيع تنشهاى شعاعى، مماسى، محورى و موثر بر يك سيلندر كامپوزيتى مورد مطالعه واقع شده است. سيلندر كامیوزيتى تقويتشده اليافى با چيدمان زواياى متقاطع $\theta \pm$ مىباشد. سيلندر تحت سه نوع بار كذارى فشارى، دورانى و تر كيبى بررسى مىشود و با استفاده از روش تقريب متوالى مندلسون كرنشهاى شعاعى و مماسى وابسته به زمان بر حسب ضخامت سيلندر مورد مطالعه قرارگرفته مىشود. مدل انتگرال يگًانه شپرى براى مدلسازى معادله ساختارى مواد كامیوزيتى استفاده شده است و همچنين ضرايب خطى و غيرخطى مدل انتگرال يگانه شپرى از نتايج تجربى و قانون توانى به دست آمده است. با بهكارگيرى معادلات تعادل، تنش-كرنش، كرنش-جابجايى و معادلات پرانتل روث و حل همزمان اين معادلات با كمك معادله ساختارى به محاسبه كرنشهاى خزشى پرداختهشده است. در پايان تأثير چيدمانهاى مختلف در بار گذارى معين بر روى تنشها شعاعى و مماسى و ... مورد مطالعه قرارگرفته شده است. بررسى تاريخچپه كرنشهاى شعاعى و مماسى وابسته به مىدهد كه با گذشت زمان رشد منحنىها كم شده و در سطح خارجى سيلندر همگرا مىشوند. سرانجام فرآيند خزش بعد از گذشت زمان كافى به حالت پايدار مىرسند. با توجه به دما و فشار بالايى كه اين مخازن در آن كار مى كنند، خزش در آنها از اهميت ويزهاى برخوردار است. با توجه به اين موضوع، تلاش براى بهبود كارايى و بالا بردن استحكام اين سيلندرها همواره وجود داشتهاست. در نتيجهى اين تلاشها، پيشرفتهايى در جهت ساخت آنها به وجود آمده است. در نسلهاى جديد سيلندرهاى تحت فشار، سعى بر اين بوده است كه بالاترين نسبت استحكام به وزن به دست آيد و مشكلات نسلهاى قبل تا حد امكان برطرف شود. در مطالعهى حاضر تحليل رفتار خزشى يک مخزن استوانهاى دوار تحت فشار ساخته شده از مواد كامیوزيتى با چیدمان متقاطع انجام مىشود. بدنهى ساخته شده چند لايههاى كامپوزيتى با انتخاب جنس و چیدمان مناسب الياف مىتواند در برابر تنشها و كرنشهاى بارگذارى مقاومت نمايد و همحنين از ديدگاه خزشى لايهها مورد FGM توجه قرار خواهد گرفت. در تحقيقات صورت گرفته پيشين اين تحليل بيشتر براى مواد همسانگًرد و

انجامشده است به همين منظور با استفاده از معادله ساختارى انتگرال يگانه شپرى به تحليل سيلندرهاى كامپوزيتى تقويتشده با الياف پرداخته مىشود. هدف از اين تحقيق بررسى و مطالعه مزاياى سيلندرهاى كاميوزيتى تقويتشده با الياف به صورت چیدمانهاى متفاوت مىباشد. در اين تحقيق تحليل رياضى و عددى تنشها و كرنشهاى خزشى انجام مى گيرد و صحهگذارى نتايج و روش مورد استفاده با نتايج ديگر
مقالات مورد ارزيابى قرار خواهند گرفت.

كلمات كليدى: كامپوزيت، پليمرهاى تقويتشده با الياف، ويسكوالاستيك، كرنشهاى وابسته به زمان،
انتگرال يگانه شپرى، روش عددى مندلسون.

فصل ا: راهنماى كاربرى

امروزه به دليل توسعهى روز افزون صنعت، سيلندرهاى تحت فشار كامیوزيتى در تكنولوزى راكتور، صنايع شيميايى، مهندسى دريايى و هوافضا مورد استفاده قرار مىگيرند. با توجه به دما و فشار بالايى كه اين مخازن در آن كار مىكنند، خزش در آنها از اهميت ويزهاى برخوردار است. با توجه به اين موضوع، تلاش براى بهبود كارايى و بالا بردن استحكام اين سيلندرها همواره وجود داشتهاست. در نتيجهى اين تلاشها، پيشرفتهايیى در جهت ساخت آنها به وجود آمده است. در نسل هاى جديد سيلندرهاى تحت فشار، سعى بر اين بوده است كه بالاترين نسبت استحكام به وزن به دست آيد و مشكلات نسلهاى قبل تا حد امكان برطرف شود. در مطالعهى حاضر تحليل رفتار خزشى يك مخزن استوانهاى دوار تحت فشار ساخته شده از مواد كامپوزيتى با چیدمان متقاطع انجام مىشود. فرض بر اين است كه بدنهى ساخته شده چند لايههاى كامیوزيتى با انتخاب جنس و چیدمان مناسب الياف مىتواند در برابر تنشها و كرنشهاى بار گذارى مقاومت نمايد و همحنين از ديدگاه خزشى لايهها مورد توجه قرار خواهد گرفت. در اين تحقيق تحليل رياضى و عددى تنشها و كرنشهاى خزشى انجام مىگيرد و صحهگذارى نتايج و روش مورد استفاده با نتايج ديگر مقالات مورد ارزيابى قرار خواهند گرفت. محاسبه تنشهاى شعاعى، مماسى، محورى و موثر با حل همزمان معادلات تعادل، كرنش- جابجايى، قانون هوك و شرايط مرزى در حالت الاستيك در سيلندر كامیوزيتى پرداخته مىشود و در انتها به تحليل كرنشهاى شعاعى و مماسى وابسته به زمان با استفاده از روش تقريب متوالى مندلسون در سيلندر كامپوزيتى به كمك معادله ساختارى پرداختهشده است.

ا-ا. معرفى متغيرهاى نرم افزار

$$
\begin{aligned}
& \text { در جدول(Y) و جدول (() به ترتيب متغيرهاى عددى، بردارى (آرايههاى يكبعدى) و آرايههاى دوبعدى كه } \\
& \text { در برنامه مورد استفاده قرار گرفتهاند؛ به ترتيب حروف الفبا ليست شده است. }
\end{aligned}
$$

جدول () متغير هاى عددى برنامه		
واحد	تعريف	متغير
-	ماتريس انتقال سفتى به مطلوبيت	A
Rad/s	سرعت زاويه دوران	W
$\mathrm{Kg} / \mathrm{m}^{\text {r }}$	چگ\%	Ru
Mpa	X X X X الاستيسيته در راستاى	\mathbf{E}_{x}
Mpa	y	$\mathbf{E}_{\mathbf{y}}$
Mpa	مدول الاستيسيته در راستاى yx	E_{xy}
Mpa	z مدول برشى در راستاى	$\mathrm{g}_{\text {z }}$
Deg	زاويه چیدمان الياف	Fi
mm	ضخامت لايه ها	R
	تعداد لايه ها	M
s	شمارنده بازه زمانى	Dt
-	ضريب پواسون	Vxy
-	ضريب پواسون	Vzy

